•  
  •  
 

Comparative Labor Law & Policy Journal

Abstract

Technological asymmetries in data-driven workplaces increasingly shape power dynamics between employers and employees. This article argues that safeguarding workers’ rights requires transforming collective labour rights into collective technological capabilities. Rather than viewing data rights narrowly as privacy issues, it reframes them as central to broader labour protections. As artificial intelligence enhances employers’ ability to monitor and exploit worker data, workers must be equipped with tools to analyse and act on their collective data. Employers now extract significant value from aggregated personal data, positioning workers as unwitting data providers and limiting workers’ agency. While current laws focus on individual data rights, they overlook the structural nature of data asymmetries. This article introduces the concept of “Data-Driven Collective Affordances” — technological mechanisms enabling workers to process and interpret their aggregated data collectively. By embedding these capabilities into legal and institutional frameworks, workers can co-determine data use, challenge exploitative practices, and more effectively exercise their rights. This collective approach leverages existing labour rights to restore balance in increasingly data-centric workplaces.

References

Albin, E. (2025). The three-tier structural legal deficit undermining the protection of employees’ personal data in the workplace. Oxford Journal of Legal Studies, 45(1), 81–107. https://doi.org/10.1093/ojls/gqae033

Aloisi, A. (2024). Regulating algorithmic management at work in the European Union: Data protection, non-discrimination and collective rights. International Journal of Comparative Labour Law and Industrial Relations, 40(1), 37–70. https://doi.org/10.54648/ijcl2024001

Aloisi, A., & De Stefano, V. (2023). Between risk mitigation and labour rights enforcement: Assessing the transatlantic race to govern AI-driven decision-making through a comparative lens. European Labour Law Journal, 14(2), 283–307. https://doi.org/10.1177/20319525231167982

Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104(3), 671–732. http://dx.doi.org/10.15779/Z38BG3

Bietti, E. (2023). A genealogy of digital platform regulation. Georgetown Law Technology Review, 7(1), 1–68. https://georgetownlawtechreview.org/a-genealogy-of-digital-platformregulation/GLTR-01-2023/

Block, S., & Sachs, B. (2020). Clean slate for worker power: Building a just economy and democracy. Labor and Worklife Programme, Harvard Law School. https://clje.law.harvard.edu/cleanslate-for-worker-power-building-a-just-economy-and-democracy/

Bodie, M. T. (2022). The law of employee data: Privacy, property, governance. Indiana Law Journal, 97(2), 707–754. https://www.repository.law.indiana.edu/ilj/vol97/iss2/7

Calacci, D. (2023). Building dreams beyond labor: Worker autonomy in the age of AI. Interactions, 30(6), 48–51. https://doi.org/10.1145/3626245

Calacci, D., & Stein, J. (2023). From access to understanding: Collective data governance for workers. European Labour Law Journal, 14(2), 253–282. https://doi.org/10.1177/20319525231167981

Calo, R. (2017). Artificial intelligence policy: A primer and roadmap. UC Davis Law Review, 51(2), 399–435. https://lawreview.law.ucdavis.edu/sites/g/files/dgvnsk15026/files/media/documents/51-2_Calo.pdf

Carroll, S. R., Garba, I., Figueroa-Rodríguez, O. L., Holbrook, J., Lovett, R., Materechera, S., Parsons, M., Raseroka, K., Rodriguez-Lonebear, D., Rowe, R., Sara, R., Walker, J. D., Anderson, J., & Hudson, M. (2020). The CARE principles for Indigenous data governance. Data Science Journal, 19(43), 1–12. https://doi:10.5334/dsj-2020-043

Citron, D. K., & Solove, D. J. (2022). Privacy harms. Boston University Law Review, 102(3), 793–863. https://doi.org/10.2139/ssrn.3782222

Cohen, J. E. (2019a). Between truth and power: The legal constructions of informational capitalism. Oxford University Press. https://doi.org/10.1093/oso/9780190246693.001.0001

Cohen, J. E. (2019b). Turning privacy inside out. Theoretical Inquiries in Law, 20(1), 1–31. https://doi.org/10.1515/til-2019-0002

Cohen, J. E. (2023). Infrastructuring the digital public sphere. Yale Journal of Law & Technology, 25(Special Issue 1). https://yjolt.org/infrastructuring-digital-public-sphere

De Stefano, V. (2019). “Negotiating the algorithm”: Automation, artificial intelligence, and labour protection. Comparative Labor Law and Policy Journal, 41(1), 15–46. https://doi.org/10.2139/ssrn.3178233

Delacroix, S., & Lawrence, N. D. (2019). Bottom-up data trusts: Disturbing the “one size fits all” approach to data governance. International Data Privacy Law, 9(4), 236–252. https://doi.org/10.1093/idpl/ipz014

Delacroix, S., & Veale, M. (2020). Smart technologies and our sense of self: Going beyond epistemic counter-profiling. In M. Hildebrandt & K. O’Hara (Eds.), Life and the law in the era of data-driven agency (pp. 80–99). Edward Elgar Publishing. https://doi.org/10.4337/9781788972000.00011

Dror-Shpoliansky, D., & Shany, Y. (2021). It’s the end of the (offline) world as we know it: From human rights to digital human rights — a proposed typology. European Journal of International Law, 32(4), 1249–1282. https://doi.org/10.1093/ejil/chab087

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2017). Calibrating noise to sensitivity in private data analysis. Journal of Privacy and Confidentiality, 7(3), 17–51. https://doi.org/10.29012/jpc.v7i3.405

Feygin, Y., Li, H., Lala, C., Hecht, B., Vincent, N., Scarcella, L., & Prewitt, M. (2021). A data dividend that works: Steps toward building an equitable data economy [White Paper]. Berggruen Institute. https://berggruen.org/news/a-data-dividend-that-works-steps-toward-building-an-equitable-data-economy

Fischli, R. (2024). Data-owning democracy: Citizen empowerment through data ownership. European Journal of Political Theory, 23(2), 204–223. https://doi.org/10.1177/14748851221110316

Fisher, A., & Streinz, T. (2021). Confronting data inequality. Columbia Journal of Transnational Law, 60(3), 829–956. https://www.jtl.columbia.edu/volume-60/confronting-datainequality-xyrkf

Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health, 3(11), e745–e750. https://doi.org/10.1016/S2589-7500(21)00208-9

Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.

Gordon-Tapiero, A., Wood, A., & Ligett, K. (2022). The case for establishing a collective perspective to address the harms of platform personalization. Proceedings of the 2022 Symposium on Computer Science and Law, USA, 119–130. https://doi.org/10.1145/3511265.3550450

Green, L. (1991). Two views of collective rights. Canadian Journal of Law & Jurisprudence, 4(2),315–327. https://doi.org/10.1017/S0841820900002952

Hintz, A., Dencik, L., & Wahl-Jorgensen, K. (2017). Digital citizenship and surveillance society. International Journal of Communication, 11, 731–739. https://ijoc.org/index.php/ijoc/article/view/5521/1929

Hooghiemstra, T. (2019). Informational self-determination, digital health and new features of data protection. European Data Protection Law Review, 5(2), 160–174. https://doi.org/10.21552/edpl/2019/2/6

Kapoor A. (2021). Collective bargaining on digital platforms and data stewardship. Friedrich-Ebert-Stiftung. https://asia.fes.de/news/fow-collective-bargaining.html

Kelly-Lyth, A. (2021). The AI Act and algorithmic management. Comparative Labor Law & Policy Journal, Dispatch No. 39. https://cllpj.law.illinois.edu/content/dispatches/2021/Dispatch-No.-39.pdf

Khan, L. M. (2019). The separation of platforms and commerce. Columbia Law Review, 119(4), 973–1098. https://www.columbialawreview.org/content/the-separation-ofplatforms-and-commerce/

Lehtiniemi, T., & Haapoja, J. (2020). Data agency at stake: MyData activism and alternative frames of equal participation. New Media & Society, 22(1), 87–104. https://doi.org/10.1177/1461444819861955

Ligett, K., & Nissim, K. (2023). We need to focus on how our data is used, not just how it is shared. Communications of the ACM, 66(9), 32–34. https://doi.org/10.1145/3572912

Lubin, A. (2022). Collective data rights and their possible abuse. Temple Law Review, 95(4), 661– 672. https://www.templelawreview.org/essay/collective-data-rights-and-their-possible-abuse/

Luitse, D., & Denkena, W. (2021). The great transformer: Examining the role of large language models in the political economy of AI. Big Data & Society, 8(2). https://doi.org/10.1177/20539517211047734

Macneil, I. R. (1985). Relational contract: What we do and do not know. Wisconsin Law Review, 1985(3), 483–525. https://repository.law.wisc.edu/s/uwlaw/item/27126

McQuillan, D. (2018). Data science as machinic neoplatonism. Philosophy & Technology, 31(2), 253–272. https://doi.org/10.1007/s13347-017-0273-3

Mühlhoff, R. (2023). Predictive privacy: Collective data protection in the context of artificial intelligence and big data. Big Data & Society, 10(1). https://doi.org/10.1177/20539517231166886

Mundlak, G. (2020). Organizing matters: Two logics of trade union representation. Edward Elgar Publishing. https://doi.org/10.4337/9781839104039

Naor, M., Nissim, K., Stemmer, U., & Yan, C. (2023). Private everlasting prediction. Proceedings of the Advances in Neural Information Processing Systems 36 (NeuralPS 2023). https://papers.nips.cc/paper_files/paper/2023/hash/abe31a12e83111fdf2cfd54deed5a2ce-Abstract-Conference.html

Nissim, K., & Wood, A. (2018). Is privacy privacy? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128), 1–17. https://doi.org/10.1098/rsta.2017.0358

Norman D. A. (2013). The design of everyday things: Revised and expanded edition. MIT Press. https://mitpress.mit.edu/9780262525671/the-design-of-everyday-things

Posner, E. A., & Weyl, E. G. (2018). Radical markets: Uprooting capitalism and democracy for a just society. Princeton University Press. https://doi.org/10.23943/9781400889457

Purtova, N. (2017). Do property rights in personal data make sense after the big data turn? Individual control and transparency. Journal of Law and Economic Regulation, 10(2), 64–78. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3070228

Richards, N. (2021). Why privacy matters. Oxford University Press. https://doi.org/10.1093/oso/9780190939045.001.0001

Richards, N., & Hartzog, W. (2019). The pathologies of digital consent. Washington University Law Review, 96(6), 1461–1503. https://journals.library.wustl.edu/lawreview/article/id/6218/

Roemmich, K., Schaub, F., & Andalibi, N. (2023). Emotion AI at work: Implications for workplace surveillance, emotional labor, and emotional privacy. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–20. https://doi.org/10.1145/3544548.3580950

Shadmy, T. (2023). Power to the users. The Law & Ethics of Human Rights, 17(2), 167–204. https://doi.org/10.1515/lehr-2023-2010

Shadmy, T., & Ligett, K. (2024). Reimagining decentralized AI. Proceedings of the Symposium on Computer Science and Law, 16–23. https://doi.org/10.1145/3614407.3643701

Shany, Y. (2023). Digital rights and the outer limits of international human rights law. German Law Journal, 24(3), 461–472. https://doi.org/10.1017/glj.2023.35

Smith, R. K. M., & van den Anker, C. (2005). The essentials of human rights. Hodder Arnold.

Solove, D. J. (2023). Murky consent: An approach to the fictions of consent in privacy law. Boston University Law Review, 104(2), 593–639. https://www.bu.edu/bulawreview/files/2024/04/SOLOVE.pdf

Srnicek, N. (2018). Platform monopolies and the political economy of AI. In J. McDonnell (Ed.), Economics for the many (pp. 152–163). Verso.

Srnicek, N. (2022). Data, compute, labour. In M. Graham & F. Ferrari (Eds.), Digital work in the planetary market (pp. 241–261). MIT Press. https://doi.org/10.7551/mitpress/13835.003.0019

Vale, D., El-Sharif, A., & Ali, M. (2022). Explainable artificial intelligence (XAI) post-hoc explainability methods: Risks and limitations in non-discrimination law. AI and Ethics, 2(4), 815–826. https://doi.org/10.1007/s43681-022-00142-y

Vale, S. B., & Zanfir-Fortuna, G. (2022). Automated decision-making under the GDPR: Practical cases from courts and data protection authorities. Future of Privacy Forum. https://fpf.org/blog/fpf-report-automated-decision-making-under-the-gdpr-a-comprehensivecase-law-analysis/

van Doorn, N., & Badger, A. (2020a). Platform capitalism’s hidden abode: Producing data assets in the gig economy. Antipode, 52(5), 1475–1495. https://doi.org/10.1111/anti.12641

van Doorn, N., & Badger, A. (2020b). Where data and finance meet: Dual value production in the gig economy. Working Paper. Platform Labor. https://platformlabor.net/research/dualvalue-production-gig-economy

Veale, M., & Edwards, L. (2018). Clarity, surprises, and further questions in the Article 29 Working Party draft guidance on automated decision-making and profiling. Computer Law & Security Review, 34(2), 398–404. https://doi.org/10.1016/j.clsr.2017.12.002

Viljoen, S. (2021). A relational theory of data governance. Yale Law Journal, 131(2), 573–654. https://www.yalelawjournal.org/feature/a-relational-theory-of-data-governance

Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn, M., & Ho, A. (2022). Will we run out of data? An analysis of the limits of scaling datasets in machine learning. ArXiv. https:// www.debicker.eu/content/files/pdf/2211.04325.pdf

Wachter, S., Mittelstadt, B., & Russell, C. (2021). Bias preservation in machine learning: The legality of fairness metrics under EU non-discrimination law. West Virginia Law Review, 123(3), 735–790. https://researchrepository.wvu.edu/wvlr/vol123/iss3/4/

Waldman, A. E. (2022a). Privacy, practice, and performance. California Law Review, 110, 1221–1280. https://www.californialawreview.org/print/privacy-practice-and-performance

Waldman, A. E. (2022b). Privacy’s rights Trap. Northwestern University Law Review, 117, 88–106. https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cgi?article=1326&context=nulr_online

Wood, A., Altman, M., Bembenek, A., Bun, M., Gaboardi, M., Honaker, J., Nissim, K., O’Brien, D. R., Steinke, T., & Vadhan, S. (2020). Differential privacy: A primer for a non-technical audience. Vanderbilt Journal of Entertainment and Technology Law, 21(1), 209–276. https://scholarship.law.vanderbilt.edu/jetlaw/vol21/iss1/4

Included in

Law Commons

Share

COinS